Priest 180622 TARGET FR TXT
Created: 2018-06-22T15:37:08+02:00
| Updated: 2018-06-22T15:37:08+02:00
| Version: 1.0.0
| Addon: Legion
| Views: 1,209
Description
Combine with target frame bg for good readability.
This is made for priest initially as it also shows imporant debuffs for disc priest. The frame can be easily adapted for other roles. Shows target name, health in decimal and percentage and if the target has mana it will also show this in precentage.
i prob forgot something as this part of the whole disc priest suite has allready seen many ittirations allready.
This is made for priest initially as it also shows imporant debuffs for disc priest. The frame can be easily adapted for other roles. Shows target name, health in decimal and percentage and if the target has mana it will also show this in precentage.
i prob forgot something as this part of the whole disc priest suite has allready seen many ittirations allready.
Download
Warning: This aura contains custom code!
What is custom code?
What is custom code?
WeakAura Code
dqLN3cqiujulsHixcvIgfQsNcvLvHe6vcszwOc3cjWUaf)svvyyGQJjILHKEMIY0qIUgO02uO6BOsnovfoNcP1HkHmpbPQ7jkv7dvcoiQIfQO6HkszIQQQlQqzJOQ6JibnsbjoPIKvQQYlvvfvntrPCtujTtv6NOIgQQIoQQQilvvPEkLPcYvvKQTkiv(QcrnwvL4SQQsRvvvuQ3QQkkzUcsQ7QQkkAVs)vumyGdJyXIKhJutwbxMQnlO(SOA0QOttYQfKKxRQKMnPUTkSBc)MOHlWXvvfvwokpxOPdDDvz7Is(UGy8IuNxrSEfcZxvvuy)kDtkuTqCYxjpgjkfALWdDolQKIAjWahg41oQnulwJkmWctssTqCYxjpgjkfALWN6)AuLAEO84ZrPqoRnuOAE6aIyWhAQAHzKd3qgbj9szn1qniE(MchdAb8)npCDSAP5mC4OJ9MW94Wm6mQWhN7p4ob(O1qMkp3zfQw8ugcNIAXtziCk4Hgvz5fRnOIHQNGgvz51iADnLaDMGOdDolQKIENvBWJ012FFYuEexqYhWhNk1faXZ3u4yqlG)Vxa0xG2F7VqNZIkPGlAbjWahg47pEE4PKXfTaECTEsC)T)(ugIZ8HfKAYcgzN8vEEmsegPqRe((7VYhBbxjmlizbbAcgwYowakxWbrqY9fqedliEsy(cMiFSfidrSGr2jFLNhJeHz)vJqJQSCiMkp3zCvo49sbjWRfDD4pLkbwBoNqqCY1Sng)q1MWz4Wrh7f2X)agUPw7X01ormiYf9h)riHecmH4KVsEmsegPqRe(Fq(dQsnpuE85OuiN1yEUskGMe41YzYxqnTKmuOAir7cKAHQD80OQqflwBqfoSI(PXjfQ2XtJQcvSynKODbwOAhpnQkuXI1ctOrLuuOAhpnQkuXI1ysTxOAhpnQkuXI1yeAVq1oEAuvOIfRPe5m5lOq1oEAuvOIfRfKvas0UaluTJNgvfQyXI1eVdiMkp3zXEtkwlREtOKAsnsHkwJUq9MuOAt4mC4OJ9sbZghwygLBQJoEcLuHL7pQDihCDMiMHnIEHxJeOAQAmpxjfqtc8AONgFmVgrOoiOskkuTdIsuOA0sTKXtVj1s3lfqjS1ErpdYiIOMGENxBsVuavQ1ErpdrhCs68A0sTKrH9MuJwQLSV7nPgTulzZ7nPgrhCsGMe41IiJOYpXArAI2t3BsTHhJGkPOg3uRfPjAFsVj1cyE0XAeDWj5ZNo61i6Gtc)pbDTfSGfSGWpbnQKcEdyYCMhJCSGisyihlyW1iHV93cwWcwWcwaZXhtSGisy4ccTfWBatMZ8yCbuCbdUgj8T)wWcwWcCXW(BblOgrhCs6fomWoRgojWRr)IO8OgtIe07fEnKrernbD(Fc6AlyblybHFcAujf8gWK5mpg5ybrKWWVWXcIiHH)LJfm4AK8fowWGRrYF5B)TGfSGfSGfOL0e9ciICTVGSVaEdyYCMhJli0waCyOclFlGIlG6cO4coi4jmbQ93cwWcwWcwaZXhtSGisy4xwqOTaEpi4jm0YiVerU25BbuCbdUgjFzbuCbhe8egAzKxIix7uKkF8XXcIiHH)DbH2c49GGNWqsf59GGNWqlJ8se5ANp(wafxWGRrYFxafxWbbpHjQe8se5ANIu5JV93cwWcwGlg2Flyb1qgre1e0HMe41IbkgrtedbpD0lwSgHgvz5qmvEUZ4QCW7LcsGx7qXyswNx7qo46mrmdoPx41ucfMjIeg6d9Mu7qo46mt6fETus2GZMMulzfQ3KEt6LAVj9oR3KEPSx4WaBXAhYbxNjDVWRDihCDMiMbhrVWRXKib9MQ2PRYpXENr5SAPKSbNzQr49MmEn1qnUo2D6lyoH(RdmzWcuh5lGATd5GRZeXmS09sLB41srO)6atgmnPwYkuVj9M0l1Et6DwVj9szVWHb2I1uc0zcIo05SOsk6DwTus2GZAQAr)p3Zf0EVj1sZz4Wrh7fwkHxlLKn4S5e6VoWKb1MRvJyee2WcGKsnQcQfIAap7nzCURDihC9uXPluytvdzQ8CNvOAXtziCkQfpLHWdnQYY5KXvvmQe5fRjEhqmvEUZI9Mud904J51MsGolmH2d18mmifXq9i7KVYZJrIH6pLH4mEEmsKR(GIeQ55XiXqnppgHk1AHzKd3qgbj9sTwKMO9EtQfiziJOW)SLYJMQ2HCW1zgrVWRDihCDMiMbt3l8A0sTKvOEt6fomFmk8Krhho3Fq5SKzC37SEHdd3J)X4u5MsyHp6hWNnAVu2lCyGpBu4JtfwyhDC4uooLWwS2HCW1zIyg2KEHxlLKn4SPerh7njPMwsgkuTbv4Wk6NgNuOAhpnQkuXI1Erptw(PIw7tx1u1ctOrLuuOAhpnQkuXI1O1KySq1oEAuvOAFYt245)PUDEXArLix71(KNSXZ)tDlwdjAxGfQ2XtJQcvSyngH2luTJNgvfQyXAmP2luTJNgvfQyXAir7cKAHQD80OQqflwtjYzYxqHQD80OQqflwliRaKODbwOAhpnQkuXIfRDihCDMacEwtjqNfMq7)rQhIsr8pqI(RO8WH5GATus2GZgBi3RnxRgXiiSHfmTtcUG5VuP0EnYqwebT3u1sjzdoJZWHJo2lS1guXq1tqJQS8AeTU2HCW1zIyMxSxkHxSxQfQ2GksZC0ZWKibvsrVWRjFOwj8AxPWRn4rc(ye0BQA0sTKvOEt6fomJcpz0XHZ9huolzg3Z6DwVWHHBkhfEYOJdN7pOCwcL9szVWHjb(Sp4M7pOKkLuhFwXAdQyO6jOrvwEnIysnLaDMGOdDolQKIENvJiuheujffQ2brjkunAPwY4P3KAP7fomutQHmIiQjOZ)tqxBblybli8tqJkPG3aMmN5XihliIeg(fowqejm8VCSGbxJKVWXcgCns(lF7VfSGfSGfSaTKMOxarKR9fK9fWBatMZ8yCbH2cGddvy5BbuCbuxafxWbbpHjqT)wWcwWcwWcyo(yIfercd)YccTfW7bbpHHwg5LiY1oFlGIlyW1i5llGIl4GGNWqlJ8se5ANIu5Jpowqejm8Vli0waVhe8egsQiVhe8egAzKxIix78X3cO4cgCns(7cO4coi4jmrLGxIix7uKkF8T)wWcwWcCXW(BblO2KEHdd3uRfPjAFsVj1ErpdYiIOMGENxdNe41OFruEudzerutqhAsGxlgOyenrme80rVgtIe07fEnIo4K0l8A0sTKrH9MuJwQLSV7nPgTulzZ7nPwKMO909MuSwyLqfplunCsGxlG5rhRfW8OJ1IA1GJYGIfRrOrvwoetLN7mUkh8EPGe41IUo8NsLaRbX5N1MWz4Wrh7LcO(b8AitLN7Scv7f9mKurjlfxLdENxlWz0UapDIgpZidCgbLSAH(ANorJNzKboJGswnUqTx0Z8ekSZR9IEMyGR1xYH351EcplxG1ipuwlEkdHtrT4PmeofF7KHj1ErptGZODbE6enE251yorBbUwFjhEVWR9IEMtNOXZMQgojWRfrc(I1cCgTlWtNOXZAWcBTx0ZepLHWPOZRfdCT(so8EHxSwkTlg4QCWRnpBJD)V2HIXKSMQwiQb8SxytGb(mQJNmkLCp(SKpQfMroCdzeK0l1AkHcZercd9HEtQ9eitLN7ScvlEkdHtrT4PmeofF7KHjfRLMZWHJo2lLCdVg6PXhZRb5PXhZJHAlW1AEOrvweujfCMLZ0KjXq9y0Avq0ZyprnMejOsk6fETWsbwJhAFb8)WhtfpQX8CLuanjWRHEASMwsgkuTbv4Wk6NgNuOAhpnQkuXI1Erptw(PIw7tx1u1ctOrLuuOAhpnQkuXI1O1KySq1oEAuvOAFYt245)PUDEXArLix71(KNSXZ)tDlwtjYzYxqHQD80OQqflwJrO9cv74PrvHkwSwmWPluTJNgvfQ3KoVxQDEXArLix79sTynMu7fQ2XtJQcvSyTx0ZqlpsrWoVgs0UaPwOAhpnQkuXI1qI2fyHQD80OQqflwliRaKODbwOAhpnQkuXIfRjEhqmvEUZI9MutnuJRJDN(cMtO)6atgSGqimHsKVGGz1ysKGENxBqfd0KjqEASgx8ylybJ99cg7cXZ(B)TGf89DQfSaU493cwWccHWylyb4K93(Bb8SGfSGfSG93l6lGGlybIfWuXVU)2F7Vx0xW(JmKLk6d7V93(BK5zb3fCPW93cwWccHWwWce4K93(BK5zb7pkGcOGfSGfSGfidVaTkSVa)p3(B)nY889cwWcwax8(tixWcwWcwWcwaoz)T)4Ih7lFUGfSaUo2fINSXfx70v5NyVjWodMrNrjSFalSCNqD0AHLc0uJW7L7I9oRq1gurAMJEgMejOsk6fEn5d1kHx7kfETbpsWhJGEtvJwQLSc1BsVWH5JpOodwQJszsc3Jtj39sTx4Wmk3uHLYrHNm64W5(dk7DwVWHHBQJszsc3Jtj3WH9Jp6LYEHdd8rPC8KpOcpHkSWY9OFuS2GkgQEcAuLLxJiMutjqNji6qNZIkPO3z1ic1bbvsrHQDquIcvJwQLmE6nPw6EHddCQ1ErpdYiIOMGEtvBsVWHjHATx0Zq0bNKoVgTulzuyVj1OLAj77EtQrl1s28EtQr0bNeOjbEnIo4K85th9ArAI2t3BsTHhJGkPOgmWNvlst0(KEtQr0bNe(Fc6AlyblybHFcAujf8gWK5mpg5ybrKWqowWGRrcF7VfSGfSGfSaTKMOxarKR9fK9fWBatMZ8yCbuCbuxafxWbbpHjqX3cOGfW7bbpHjqTG)ybu5B)TGfSGfSGfWC8XeliIegUGqBb8YlVhe8eMOsWlrKRD(wqOTGe((dQ8TakUGbxJe(2FlyblybUyy)TGfuJOdoj9cVgojWRr)IO8OgtIe07fEnKrernbD(Fc6AlyblybHFcAujf8gWK5mpg5ybrKWWVWXcIiHH)LJfm4AK8fowWGRrYF5B)TGfSGfSGfWC8XeliIeg(LfeAlG3aMmN5X4cO4cgCns(cFCSGisy4FxqOTaEdyYCMhJlGIlyW1i5V8T)wWcwWcCXW(BblOgYiIOMGo0KaVwezev(jcXiIOMGEXAHvcv8Sq1cyE0XArTAWrzqXI1i0OklhIPYZDgxLdEVuqc8Arxh(tPsG1G48ZAt4mC4OJ9sbu)aEnKPYZDwHQ9IEgsQOKLIRYbVZRf4mAxGNorJNzKboJGswTqFTtNOXZmYaNrqjRgxO2l6zEcf251ErptmW16l5W78ApHNLlWAKhkRfpLHWPOw8ugcNIVDYWKAVONjWz0UapDIgp78AmNOTaxRVKdVx41ErpZPt04ztvdNe41IibFXAboJ2f4Pt04znyHT2l6zINYq4u051IbUwFjhEVWlwlL2fdCvo41MNTXU)x7qXyswtvle1aE2lSCdd3uHLsUhnHkSJYn31cZihUHmcs6LAnLqHzIiHH(qVj1EcKPYZDwHQfpLHWPOw8ugcNIVDYWKI1sZz4Wrh7LsUHxd904J51G804J5XqTf4Anp0OklcQKcoZYzAYKyOEmATki6zSNOgtIeujf9cVwyPaRXdTVa(F4JPIh1yEUskGMe41qpnwtljdfQ2GkCyf9tJtkuTJNgvfQyXAVONjl)urR9PRAQAHj0OskkuTJNgvfQyXA0AsmwOAhpnQkuTp5jB88)u3oVyTOsKR9AFYt245)PUfRPe5m5lOq1oEAuvOIfRXi0EHQD80OQqflwlg40fQ2XtJQc1BsN3l1oVyTOsKR9EPwSgtQ9cv74PrvHkwSgs0UaPwOAhpnQkuXI1qI2fyHQD80OQqflwliRaKODbwOAhpnQkuXIfRjEhqmvEUZI9MutnuJRJDN(cMtO)6atgSGqimHsKVGakRXKib9oV2GkgOjtG80ynU4X(YNJ99uCDSlepzJlE)T)gzE((o1Lc5I3Fc5ccHWyeboz)T)gzE((o1Lc3FVOVacUaziIfWuXVU)2FJmpFFN6sH7Vx0zlyqfPzoQKI9hzilv0h2F7V93iZZ33PUu4(tixqiegJiWj7V93iZZ33PUu4(JcOakybUyybYWlqRc7lW)ZT)2FJmpFFN6sHCX7pHCbHqymIaNS)2FCXJ9Lph77P46yxiEYgxCTtxLFI9Ma7mygDgLW(bSWYDc1rRfwkqtncVxUl2lLfQ2GksZC0ZWKibvsrVWRjFOwj8AxPWRn4rc(ye0BQAKHbfQKcIodYu55olwOI1qpnM8PujWAZ5ecItU(9uuyOavlSuG14H2xa)p8XuXJAmpxjfqtc8AONgRreQdcQKIcv7GOefQgTulz80BsT09chgkR9IEgKrernb9oV2KEHdd1AVONHOdojDEnAPwYOWEtQrl1s239MuJwQLS59MuJOdojqtc8ArKru5NyTinr7P7nP2WJrqLuuB8ArAI2N0BsTaMhDSgrhCs(8PJEnIo4KW)tqxBblybli8tqJkPG3aMmN5XihliIegYXcgCns4B)TGfSGfSGfWC8XeliIegUGqBb8gWK5mpgxafxWGRrcF7VfSGfSaxmS)wWcQr0bNKEHdd3WwdNe41OFruEuJjrc69cVgYiIOMGo)pbDTfSGfSGWpbnQKcEdyYCMhJCSGisy4x4ybrKWW)YXcgCns(chlyW1i5V8T)wWcwWcwWc0sAIEbbmz(cY(c4nGjZzEmUakUGzWalFlGlxqY(BblyblyblqlPj6fKs(e0(cY(coi4jm0UsZBatMZ8yCbuCbZGbw(2FlyblyblybAjnrVGuYNG2)xfrIG2xq2xWbbpHjQe8gWK5lGIl4GGNWeO4BbuCb8Ms(e0(c(JfqjF7VfSGfSaMJpMybrKWWVSGqBb8Ms(e0()Qise0(cO4cgCns(cFCSGisy4FxqOTaEtjFcA)FvejcAFbuCbdUgj)LV93cwGlg2Flyb1qgre1e0HMe41sjFcA)FNMmPyTisyyHQHtc8Abmp6yTaMhDSwuRgCuguSwyLqfplunCsGxlG5rhRfW8OJ1IA1GNsIO8OyXAeAuLLdXu55oJRYbVxkibETORd)PujWAZ5ecItU(9uuyOavJwk1dYqeqEACmbjL2h68Arur)1j))yeujfnvTdfJjznvnLqHzIiHH(qVj1gHuE0l8AP5mC4OJ9oEYmyM9bSZ4g2r5ECyhVwUwgstvBcNHdhDSxkG6hCdd3CZ9mkNXnS1crnGN9(bvygNs4W(X4Fa7m4u5Ug5HYdcQOhz1aEwJFvAFOgYu55oRq1ErpdjvuYsXv5G351cCgTlWtNOXZmYaNrqjRgxi71oDIgpZidCgbLSACHAVON5juyNx7f9mXaxRVKdVZR9eEwUaRrEOSw8ugcNIAXtziCk(2jdtQ9IEMaNr7c80jA8SZRXCI2cCT(so8EHx7f9mNorJNnvnCsGxlIe8fRf4mAxGNorJN1gD0AVONjEkdHtrNxlg4A9LC49cVyn0tJpMxdYtJpMhd1wGR18qJQSiOsk4mlNPjtIH6XO1QGONXEIAONgt4xkqtncV3eQ1ysKGENxd90i1pLkbwBAJDHg77ANUk)e7njbgUtOoBuyhF8pGpRg6PXKXeKuAFOPQHEAKk)sbYVMKhRX50HY2u3XQXKibvsrVWRHEAKk)sbwJFMAel4p9idmcswaeunAPwYkuVj9chMrhLAcSJ)X4u5Msyt6LAVWHz0rhho3Fq5SKzCtfwylwd90yY0KcKOehUaRn11M6)XQHEAK60KcKOehUaRn11M6)XQnOIHQNGgvz51iIj1uc0zcIo05SOsk6Dwn0tJuNMulzfQ3KEt6LAVj9oR3KEPS3KI1qpnsDmbjL2hAQAONgPYVuGMAeEVuPSwyvAFyKvd4zVjjWRfQErufEsTVNIcdfOAONgt4xkWA8ZuJyb)PhzGrqYcGGQLs7IbUkh8AZZ2y3)RfWK5mpg)K50QOsk6fEn0tJj8lfi)AsESgNthkBtDhRg6PrQ14YGAdQyGMmbYtJ14jBzBb2FnOX4QTGfSGf8N1LtUo1LNS9N5(BACY158aTGfSGfSGfSGfSGfSG)S(FmOXMg0y))NzTbvmqtMmfTu074u(bv4Cx7RUhWtmWPXVjOs2u1i0OskIfQwejmSq1Y1YqYqOrLuulEkdPwUwgsMWmYHxBKDYx55XirUORhsTbzMCTmKMQyXAKhk78AONgtQXLXAkrwol6nvnTKmuOAdQWHv0pnoPq1oEAuvOIfR9IEMS8tfT2NUQPQfMqJkPOq1oEAuvOIfRrRjXyHQD80OQq1(KNSXZ)tD78I1IkrU2R9jpzJN)N6wSMsKZKVGcv74PrvHkwSgJq7fQ2XtJQcvSyTyGtxOAhpnQkuVjDEVu78I1IkrU27LAXAmP2luTJNgvfQyXAVONHwEKIGDEnKODbsTq1oEAuvOIfRHeTlWcv74PrvHkwSwqwbir7cSq1oEAuvOIflwtrlfDEn1qnKrekr(ccXDDS2tGmvEUZkuT4Pmeof1INYq4u8TtgMuSg6PXKPj1swH6nP3KEP2BsVZ6nPxk7nPynX7aIPYZDwS3KAHLc0uJW7D8I9cBHQnOI0mh9mmjsqLu0l8AYhQvcV2vk8AdEKGpgb9MQgzyqHkPGOZGmvEUZIfQ3Kcv7jqMkp3zfQ2tOWAiHL7yXAitLN7Scv7juynKWYDSwGZODbE6enEMrg4mckz12)mYETNWZYfynYdL1ErpZtOWoV2l6zcCgTlWtNOXZoV2l6ziPIswkUkh8oVMNLlWAHIt04znCsGxlIe8fRfFP8SCbAVWHvPRLzA8yqzmiE(gQwGZODbE6enEwdET4lLNLlWpzEyv6A2NJLTSvSyXAONgt(uQeyT5CcbXjx)EkkmuGQfwkWA8q7lG)h(yQ4rnMNRKcOjbEn0tJ1ic1bbvsrHQDquIcvJwQLmE6nPw6EHddCQ1ErpdYiIOMGENxBsVWHHATx0Zq0bNKoVgTulzuyVj1OLAj77EtQrl1s28EtQr0bNeOjbETiYiQ8tSwKMO909MuB4XiOskQbdL1I0eTpP3KAbmp6ynIo4K85th9AeDWjH)NGU2cwWcwq4NGgvsbVbmzoZJrowqejmKJfm4AKW3(BblyblyblG54JjwqejmCbH2c4nGjZzEmUakUGbxJe(2FlyblybUyy)TGfudzerutqhAsGxlL8jO9)DAYKAeDWjPx4WmkL1ysKGEVWRHmIiQjOZ)tqxBblybli8tqJkPG3aMmN5XihliIeg(fowqejm8VCSGbxJKVWXcgCns(lF7VfSGfSGfSaTKMOxqatMVGSVaEdyYCMhJlGIlygmWY3c4YfKS)wWcwWcwWc0sAIEbPKpbTVGSVGdcEcdTR08gWK5mpgxafxWmyGLV93cwWcwWcwGwst0liL8jO9)vrKiO9fK9fCqWtyIkbVbmz(cO4coi4jmbk(wafxaVPKpbTVG)ybuY3(BblyblG54Jjwqejm8lli0waVPKpbT)VkIebTVakUGbxJKVWhhliIeg(3feAlG3uYNG2)xfrIG2xafxWGRrYF5B)TGf4IH93cwqXArKWWcvJwQLmE6nPw6EtQn8yeujf1Gb(h1ErpdYiIOMGENxBsVWw7f9meDWjPPQfPjAFsVj1qgre1e0HMe41sjFcA)FNMmPgYiIOMGo)pbDTfSGfSGWpbnQKcEdyYCMhJCSGisy4x4ybrKWW)YXcgCns(chlyW1i5V8T)wWcwWcwWc0sAIEbbmz(cY(c4nGjZzEmUakUGzWalFlGlxqY(BblyblyblqlPj6fKs(e0(cY(coi4jm0UsZBatMZ8yCbuCbZGbw(2FlyblyblybAjnrVGuYNG2)xfrIG2xq2xWbbpHjQe8gWK5lGIl4GGNWeO4BbuCb8Ms(e0(c(JfqjF7VfSGfSaMJpMybrKWWVSGqBb8Ms(e0()Qise0(cO4cgCns(cFCSGisy4FxqOTaEtjFcA)FvejcAFbuCbdUgj)LV93cwGlg2Flyb1cyE0XArTAWrzqTinr7P7nPgrhCs6fEnAPwYOWEtQrl1s239MuJwQLS59MuJjrc69cVyTWkHkEwOA4KaVwaZJowlG5rhRfMm4flwJqJQSCiMkp3zCvo49sbjWRfDD4pLkbwdIZp)EkkmuGQrlL6bzicipnoMGKs7dDETiQO)6K)FmcQKIMQ2HIXKSMQMsOWmrKWqFO3KAJqkp6fET0CgoC0XEhho8A5AzinvTjCgoC0XEPGzWHTwiQb8SxQWcd3WMWDcLCdFCkPMuJ8q5bbv0JSAapRXVkTpudzQ8CNvOAVON5juyNx7juynKWYDSwGZODbE6enEMrg4mckz14c1oDIgpZidCgbLSACHAVONjg4A9LC4DET4Pmeof1INYq4u8TtgMu7j8SCbwJ8qzTx0Ze4mAxGNorJNDEnMt0wGR1xYH3l8AVONHKkkzP4QCW78AVON50jA8SPQHtc8ArKGVyTaNr7c80jA8S2OWw7f9mXtziCk68AXaxRVKdVx4fRHEA8X8AqEA8X8yO2cCTMhAuLfbvsbNz5mnzsmupgTwfe9m2tud90yc)sbAQr49MqTgtIe078AONgP(PujWAtBSl0yFx70v5NyVusfMXhF8XHDCkhLYektQHEAmzmbjL2hAQAONgPYVuG8Rj5XACoDOSn1DSAmjsqLu0l8AONgPYVuG14NPgXc(tpYaJGKfabvJwQLSc1BsVWHz0rPMa74FmovUPe2KEP2lCygD0XHZ9huolzg3uHf2I1(Q7b8edCA8BcQKnvn0tJuNMuGeL4WfyTPU2u)pwTbvmu9e0OklVgrmPMsGotq0HoNfvsrVZQHEAK60KAjRq9M0BsVu7nP3z9M0lL9MuSg6PrQJjiP0(qtvd90iv(Lc0uJW7LkL1cRs7dJSAap7njbEn0tJjttkqIsC4cS2uxBQ)hRg6PXe(LcSg)m1iwWF6rgyeKSaiOAP0UyGRYbV28Sn29)AbmzoZJXpzoTkQKIEHxd90yc)sbYVMKhRX50HY2u3XQHEAKAnUmO2GkgOjtG80ynUuS)4YG93cQnOIbAYKPOLIEhNYpOcN7A0sXGcvsrSq9MuOA0No9xluTSimfjL2RrqKq)vskTxdzQ8CN1BsXA0NerUhluVjfQyXIfRrOrLueluTisyyHQLRLHKHqJkPOw8ugsTCTmKmHzKdV2i7KVYZJrICrxpKAdYm5AzinvXI1eVdiMkp3zXEtQHEAmPgxgRPez5SO3u10sYqHQnOchwr)04Kcv74PrvHkwS2l6zYYpv0AF6QMQwycnQKIcv74PrvHkwSgTMeJfQ2XtJQcv7tEYgp)p1TZlwlQe5AV2N8KnE(FQBXAkrot(ckuTJNgvfQyXAmcTxOAhpnQkuXI1IboDHQD80OQq9M059sTZlwlQe5AVxQfRXKAVq1oEAuvOIfRHeTlqQfQ2XtJQcvSynKODbwOAhpnQkuXI1cYkajAxGfQ2XtJQcvSyXAkAPOZRPgQHewUJ1EcKPYZDwHQfpLHWPOw8ugcNIVDYWKApHcRHewUJfRHEAmzAsTKvOEt6nPxQ9M07SEt6LYEtkwJ8qzNxlSuGMAeEVjuwS3XluTbvKM5ONHjrcQKIEHxt(qTs41UsHxBWJe8XiO3u1iddkujfeDgKPYZDwSq9MuOApbYu55oRq1EcfwdjSChlwdzQ8CNvOApHcRHewUJ1cCgTlWtNOXZmYaNrqjR2(Nr2R9eEwUaRrEOS2l6zEcf251ErptGZODbE6enE251ErpdjvuYsXv5G3518SCbwluCIgpRHtc8ArKGVyT4lLNLlq7foSkDTmtJhdkJbXZ3q1cCgTlWtNOXZAWRfFP8SCb(jZdRsxZ(CSSLTIflwd90yYNsLaRnNtiio563trHHcuTWsbwJhAFb8)WhtfpQX8CLuanjWRHEASgrOoiOskkuTdIsuOA0sTKXtVj1s3lCyGtT2l6zqgre1e078At6fomuR9IEgIo4K051OLAjJc7nPgTulzF3BsnAPwYM3BsnIo4KanjWRfrgrLFI1I0eTNU3KAdpgbvsrnyOSwKMO9j9MulG5rhRr0bNKpF6OxJOdoj8)e01wWcwWcc)e0Osk4nGjZzEmYXcIiHHCSGbxJe(2FlyblyblybmhFmXcIiHHli0waVbmzoZJXfqXfm4AKW3(BblyblWfd7VfSGAiJiIAc6qtc8APKpbT)VttMuJOdoj9chMrPSgtIe07fEnKrernbD(Fc6AlyblybHFcAujf8gWK5mpg5ybrKWWVWXcIiHH)LJfm4AK8fowWGRrYF5B)TGfSGfSGfOL0e9ccyY8fK9fWBatMZ8yCbuCbZGbw(waxUGK93cwWcwWcwGwst0liL8jO9fK9fCqWtyODLM3aMmN5X4cO4cMbdS8T)wWcwWcwWc0sAIEbPKpbT)VkIebTVGSVGdcEctuj4nGjZxafxWbbpHjqX3cO4c4nL8jO9f8hlGs(2FlyblybmhFmXcIiHHFzbH2c4nL8jO9)vrKiO9fqXfm4AK8f(4ybrKWW)UGqBb8Ms(e0()Qise0(cO4cgCns(lF7VfSaxmS)wWckwlIegwOA0sTKXtVj1s3BsTHhJGkPOgmW)O2l6zqgre1e078At6f2AVONHOdojnvTinr7t6nPgYiIOMGo0KaVwk5tq7)70Kj1qgre1e05)jORTGfSGfe(jOrLuWBatMZ8yKJfercd)chliIeg(xowWGRrYx4ybdUgj)LV93cwWcwWcwGwst0liGjZxq2xaVbmzoZJXfqXfmdgy5BbC5cs2FlyblyblybAjnrVGuYNG2xq2xWbbpHH2vAEdyYCMhJlGIlygmWY3(BblyblyblqlPj6fKs(e0()Qise0(cY(coi4jmrLG3aMmFbuCbhe8eMafFlGIlG3uYNG2xWFSak5B)TGfSGfWC8XeliIeg(LfeAlG3uYNG2)xfrIG2xafxWGRrYx4JJfercd)7ccTfWBk5tq7)RIirq7lGIlyW1i5V8T)wWcCXW(BblOwaZJowlQvdokdQfPjApDVj1i6GtsVWRrl1sgf2BsnAPwY(U3KA0sTKnV3KAmjsqVx4fRfwjuXZcvdNe41cyE0XAbmp6yTWKbVyXAeAuLLdXu55oJRYbVxkibETORd)PujWAqC(53trHHcunAPupidra5PXXeKuAFOZRfrf9xN8)JrqLu0u1oumMK1u1ucfMjIeg6d9MuBes5rVWRLMZWHJo274WHxlxldPPQnHZWHJo2lfmdoS1crnGN9oo3Wa7hjCpoLuPMKmAsnYdLheurpYQb8Sg)Q0(qnKPYZDwHQ9IEMNqHDETNqH1qcl3XAboJ2f4Pt04zgzGZiOKvl0x70jA8mJmWzeuYQXfQ9IEMyGR1xYH351INYq4uulEkdHtX3ozysTNWZYfynYdL1ErptGZODbE6enE251yorBbUwFjhEVWR9IEgsQOKLIRYbVZR9IEMtNOXZMQgojWRfrc(I1cCgTlWtNOXZAJcBTx0ZepLHWPOZRfdCT(so8EHxSg6PXhZRb5PXhZJHAlW1AEOrvweujfCMLZ0KjXq9y0Avq0Zyprn0tJj8lfOPgH3Bc1AmjsqVZRHEAK6NsLaRnTXUqJ9DTtxLFI9sjvygF8Xhh2XPCuktOmPg6PXKXeKuAFOPQHEAKk)sbYVMKhRX50HY2u3XQXKibvsrVWRHEAKk)sbwJFMAel4p9idmcswaeunAPwYkuVj9chMrhLAcSJ)X4u5Msyt6LAVWHz0rhho3Fq5SKzCtfwylw7RUhWtmWPXVjOs2u1qpnsDAsbsuIdxG1M6At9)y1guXq1tqJQS8AeTUMsGotq0HoNfvsrVZQHEAK60KAjRq9M0BsVu7nP3z9M0lL9MuSg6PrQJjiP0(qtvd90iv(Lc0uJW7LkL1cRs7dJSAap7njbEn0tJjttkqIsC4cS2uxBQ)hRg6PXe(LcSg)m1iwWF6rgyeKSaiOAP0UyGRYbV28Sn29)AbmzoZJXpzoTkQKIEHxd90yc)sbYVMKhRX50HY2u3XQHEAKAnUmO2GkgOjtG80ynUuS)4YG9xiYNyWhwqTbvmqtMmfTu074u(bv4CxJwkguOskIfQ3KcvJ(0P)AHQLfHPiP0EncIe6VssP9AitLN7SEtkwJ(KiY9yH6nPqflwSyncnQKIyHQfrcdluTCTmKmeAujf1INYqQLRLHKjmJC41gzN8vEEmsKl66HuBqMjxldPPkwSM4DaXu55ol2l1AONgtQXLXAkrwol6nvnTKmuOAdQWHv0pnoPq1oEAuvOIfR9IEMS8tfT2NUQPQfMqJkPOq1oEAuvOIfRrRjXyHQD80OQq1(KNSXZ)tD78I1IkrU2R9jpzJN)N6wSMsKZKVGcv74PrvHkwSgJq7fQ2XtJQcvSyTyGtxOAhpnQkuVjDEVu78I1IkrU27LAXAmP2luTJNgvfQyXAir7cKAHQD80OQqflwdjAxGfQ2XtJQcvSyTGScqI2fyHQD80OQqflwSMIwk68AQHAiHL74cOw7jqMkp3zfQw8ugcNIAXtziCk(2jdtQ9ekSgsy5owSg6PXKPj1swH6nP3KEP2BsVZ6nPxk7nPynYdLDETWsbAQr49MqzXE5Uq1gurAMJEgMejOsk6fEn5d1kHx7kfETbpsWhJGEtvJmmOqLuq0zqMkp3zXc1BsHQ9eitLN7Scv7juynKWYDSynKPYZDwHQ9ekSgsy5owlWz0UapDIgpZidCgbLSA7FgzV2t4z5cSg5HYAVON5juyNx7f9mboJ2f4Pt04zNx7f9mKurjlfxLdENxZZYfyTqXjA8SgojWRfrc(I1IVuEwUaTx4WQ01YmnEmOmgepFdvlWz0UapDIgpRbVw8LYZYf4NmpSkDn7ZXYw2kwSyn0tJjFkvcS2CoHG4KRFpffgkq1clfynEO9fW)dFmv8OgZZvsb0KaVg6PXAeH6GGkPOq1oikrHQrl1sgp9MulDVWHbo1AVONbzerutqVZRnPx4WqT2l6zi6GtsNxJwQLmkS3KA0sTK9DVj1OLAjBEVj1i6Gtc0KaVwezev(jwlst0E6EtQn8yeujf1GHYArAI2N0BsTaMhDSgrhCs(8PJEnIo4KW)tqxBblybli8tqJkPG3aMmN5XihliIegYXcgCns4B)TGfSGfSGfWC8XeliIegUGqBb8gWK5mpgxafxWGRrcF7VfSGfSaxmS)wWcQHmIiQjOdnjWRLs(e0()onzsnIo4K0lCygLYAmjsqVx41qgre1e05)jORTGfSGfe(jOrLuWBatMZ8yKJfercd)chliIeg(xowWGRrYx4ybdUgj)LV93cwWcwWcwGwst0liGjZxq2xaVbmzoZJXfqXfmdgy5BbC5cs2FlyblyblybAjnrVGuYNG2xq2xWbbpHH2vAEdyYCMhJlGIlygmWY3(BblyblyblqlPj6fKs(e0()Qise0(cY(coi4jmrLG3aMmFbuCbhe8eMafFlGIlG3uYNG2xWFSak5B)TGfSGfWC8XeliIeg(LfeAlG3uYNG2)xfrIG2xafxWGRrYx4JJfercd)7ccTfWBk5tq7)RIirq7lGIlyW1i5V8T)wWcCXW(BblOyTisyyHQrl1sgp9MulDVj1gEmcQKIAWa)JAVONbzerutqVZRnPxyR9IEgIo4K0u1I0eTpP3KAiJiIAc6qtc8APKpbT)VttMudzerutqN)NGU2cwWcwq4NGgvsbVbmzoZJrowqejm8lCSGisy4F5ybdUgjFHJfm4AK8x(2FlyblyblybAjnrVGaMmFbzFb8gWK5mpgxafxWmyGLVfWLliz)TGfSGfSGfOL0e9csjFcAFbzFbhe8egAxP5nGjZzEmUakUGzWalF7VfSGfSGfSaTKMOxqk5tq7)RIirq7li7l4GGNWevcEdyY8fqXfCqWtycu8TakUaEtjFcAFb)XcOKV93cwWcwaZXhtSGisy4xwqOTaEtjFcA)FvejcAFbuCbdUgjFHpowqejm8Vli0waVPKpbT)VkIebTVakUGbxJK)Y3(BblWfd7VfSGAbmp6yTOwn4OmOwKMO909MuJOdoj9cVgTulzuyVj1OLAj77EtQrl1s28EtQXKib9EHxSwyLqfplunCsGxlG5rhRfW8OJ1ctg8IfRrOrvwoetLN7mUkh8EPGe41IUo8NsLaRbX5NFpffgkq1OLs9GmebKNghtqsP9HoVwev0FDY)pgbvsrtv7qXyswtvtjuyMisyOp0BsTriLh9cVwAodho6yVJdhETCTmKMQ2eodho6yVuWm4Wwle1aE2Bc8XHzu4jFWnCUPYnSuwJ8q5bbv0JSAapRXVkTpudzQ8CNvOAVON5juyNx7juynKWYDSwGZODbE6enEMrg4mckz1YE2RD6enEMrg4mckz14c1ErptmW16l5W78AXtziCkQfpLHWP4BNmmP2t4z5cSg5HYAVONjWz0UapDIgp78AmNOTaxRVKdVx41ErpdjvuYsXv5G351ErpZPt04ztvdNe41IibFXAboJ2f4Pt04zn41Erpt8ugcNIoVwmW16l5W7fEXAONgFmVgKNgFmpgQTaxR5HgvzrqLuWzwottMed1JrRvbrpJ9e1qpnMWVuGMAeEVjuRXKib9oVg6PrQFkvcS20g7cn231oDv(j2lLuHz8XhFCyhNYrPmHYKAONgtgtqsP9HMQg6PrQ8lfi)AsESgNthkBtDhRgtIeujf9cVg6PrQ8lfyn(zQrSG)0JmWiizbqq1OLAjRq9M0lCygDuQjWo(hJtLBkHnPxQ9chMrhDC4C)bLZsMXnvyHTyTV6EapXaNg)MGkztvd90i1PjfirjoCbwBQRn1)JvBqfdvpbnQYYRr06Akb6mbrh6Cwujf9oRg6PrQttQLSc1BsVj9sT3KEN1BsVu2BsXAONgPoMGKs7dnvn0tJu5xkqtncVxQuwlSkTpmYQb8S3Ke41qpnMmnPajkXHlWAtDTP(FSAONgt4xkWA8ZuJyb)PhzGrqYcGGQLs7IbUkh8AZZ2y3)RfWK5mpg)K50QOsk6fEn0tJj8lfi)AsESgNthkBtDhRg6PrQ14YGAdQyGMmbYtJ14sX(Jld2Fc5c0QW(cIQCXcgCeMAdQyGMmzkAPO3XP8dQW5UgTumOqLueluVjfQg9Pt)1cvllctrsP9Aeej0FLKs71qMkp3z9MuSg9jrK7Xc1BsHkwSyXAeAujfXcvlIegwOA5Azizi0OskQfpLHulxldjtyg5WRnYo5R88yKix01dP2GmtUwgstvSynX7aIPYZDwS3KAONgtQXLXAkrwol6nvnTKmuOAdQWHv0pnoPq1oEAuvOIfR9IEMS8tfT2NUQPQfMqJkPOq1oEAuvOIfRrRjXyHQD80OQq1(KNSXZ)tD78I1IkrU2R9jpzJN)N6wSMsKZKVGcv74PrvHkwSgJq7fQ2XtJQcvSyTyGtxOAhpnQkuVjDEVu78I1IkrU27LAXAmP2luTJNgvfQyXAir7cKAHQD80OQqflwdjAxGfQ2XtJQcvSyTGScqI2fyHQD80OQqflwSMIwk68AQHAiHL74cOS2tGmvEUZkuT4Pmeof1INYq4u8TtgMu7juynKWYDSyn0tJjttQLSc1BsVj9sT3KEN1BsVu2BsXAKhk78AHLc0uJW7nHYI9(rHQnOI0mh9mmjsqLu0l8AdEKGpgb9MQgzyqHkPGOZGmvEUZIfQyn0tJjFkvcS2CoHG4KRFpffgkq1clfynEO9fW)dFmv8OgZZvsb0KaVg6PXAeH6GGkPOq1oikrHQrl1sgp9MulDVWHbo1AVONbzerutqVZRnPx4WqT2l6zi6GtsNxJwQLmkS3KA0sTK9DVj1OLAjBEVj1i6Gtc0KaVgrhCs(8PJETinr7P7nP2WJrqLuudMpQfPjAFsVj1cyE0XAeDWj5ZNo61i6Gtc)pbDTfSGfSGWpbnQKcEdyYCMhJCSGisyihlyW1iHV93cwWcwWcwGwst0lGiY1(cY(c4nGjZzEmUakUaQlGIl4GGNWeO4BbuWc49GGNWeOwWFSaQ8T)wWcwWcwWcyo(yIfercdxqOTaE5L3dcEctuj4LiY1oFli0wqcF)bv(wafxWGRrcF7VfSGfSaxmS)wWcQr0bNKEHdd3uwdNe41OFruEuJjrc69cVgYiIOMGo)pbDTfSGfSGWpbnQKcEdyYCMhJCSGisy4x4ybrKWW)YXcgCns(chlyW1i5V8T)wWcwWcwWc0sAIEbbmz(cY(c4nGjZzEmUakUGzWalFlGlxqY(BblyblyblqlPj6fKs(e0(cY(coi4jm0UsZBatMZ8yCbuCbZGbw(2FlyblyblybAjnrVGuYNG2)xfrIG2xq2xWbbpHjQe8gWK5lGIl4GGNWeO4BbuCb8Ms(e0(c(JfqjF7VfSGfSaMJpMybrKWWVSGqBb8Ms(e0()Qise0(cO4cgCns(cFCSGisy4FxqOTaEtjFcA)FvejcAFbuCbdUgj)LV93cwGlg2Flyb1qgre1e0HMe41sjFcA)FNMmPyTisyyHQrl1sgp9MulDVj1ErpdYiIOMGENxBsVWw7f9meDWjPPQrl1sgf2BsnAPwY(U3KA0sTKnV3KArAI2t3BsTHhJGkPOgmW)OwKMO9j9MulG5rhRf1QbhLb1ysKGEVWRHtc8A0VikpQr0bNKEHxdzerutqN)NGU2cwWcwq4NGgvsbVbmzoZJrowqejm8lCSGisy4F5ybdUgjFHJfm4AK8x(2FlyblyblybAjnrVGaMmFbzFb8gWK5mpgxafxWmyGLVfWLliz)TGfSGfSGfOL0e9csjFcAFbzFbhe8egAxP5nGjZzEmUakUGzWalF7VfSGfSGfSaTKMOxqk5tq7)RIirq7li7l4GGNWevcEdyY8fqXfCqWtycu8TakUaEtjFcAFb)XcOKV93cwWcwaZXhtSGisy4xwqOTaEtjFcA)FvejcAFbuCbdUgjFHpowqejm8Vli0waVPKpbT)VkIebTVakUGbxJK)Y3(BblWfd7VfSGAiJiIAc6qtc8APKpbT)VttMuSwyLqfplunCsGxlG5rhRfW8OJ1ctg8IfRrOrvwoetLN7mUkh8EPGe41IUo8NsLaRbX5NFpffgkq1OLs9GmebKNghtqsP9HoVwev0FDY)pgbvsrtv7qXyswtvBes5rVWRPekmtejm0h6nP2eodho6yVuWmyPcd1XhhwkHdlvUNrzT0CgoC0XEHD2hWmk1pgNYrhfo1zuwlxldPPQfIAap7fwkHjz0XtOK7rt(GB4j1ipuEqqf9iRgWZA8Rs7d1qMkp3zfQ2l6ziPIswkUkh8oVwGZODbE6enEMrg4mckz1c91g8uVWHHMe41cfE(MR8p9SvJ5eTf4A9LC49cV2l6zoDIgpBQAboJ2f4Pt04zTrHT2l6zIbUwFjhENx7f9mboJ2f4Pt04ztvlEkdHtrT4Pmeof8qJQS8AXaxRVKdVx41ErpZtOWoV2tOWAiHL7yTtNOXZmYaNrqjRgxOMGC4Xc1BsTFVH8dxGfR9eEwUaRrEOS2l6zINYq4u051KHi4uON05fRHEA8X8AqEA8X8yO2cCTMhAuLfbvsbNz5mnzsmupgTwfe9m2tud90iv(LcKFnjpwJZPdLTPUJvd90yY0KcKOehUaRn11M6)XQXKib9oVg6PrQFkvcS20g7cn231oDv(j2BcLWqLkvQjCdlSJ(rcL1qpnMmMGKs7dnvn0tJj8lfOPgH3Bc1AmjsqLu0l8AONgPYVuG14NPgXc(tpYaJGKfabvJwQLSc1BsVWHz0rPMa74FmovUPe2KEP2lCy4EuQjWo(hJtLBkHnP3z9cVxk7fomWsjC4WHdNAcLWY94CxSg6PrQttkqIsC4cS2uxBQ)hRg6PrQttQLSc1BsVj9sT3KEN1BsVu2BsXAdQyO6jOrvwEnIysnLaDMGOdDolQKIENv7RUhWtmWPXVjOs2u1qpnsDmbjL2hAQAONgPYVuGMAeEVuPSwyvAFyKvd4zVjjWRfQErufEsTVNIcdfOAONgt4xkWA8ZuJyb)PhzGrqYcGGQLs7IbUkh8AZZ2y3)RfWK5mpg)K50QOsk6fEn0tJj8lfi)AsESgNthkBtDhRg6PrQ14YGAdQyGMmbYtJ1(n9)PWX(NlU2GkgOjtMIwk6DCk)GkCURrlfdkujfXc1BsHQrF60FTq1YIWuKuAVgbrc9xjP0EnKPYZDwVjfRrFse5ESq9MuOIflwSgHgvsrSq1IiHHfQwUwgsgcnQKIAXtzi1Y1YqYeMro8AJSt(kppgjYfD9qQniZKRLH0uflwt8oGyQ8CNf7nPg6PXKACzSMsKLZIEtvtljdfQ2GkCyf9tJtkuTJNgvfQyXAVONjl)urR9PRAQAHj0OskkuTJNgvfQyXA0AsmwOAhpnQkuTp5jB88)u3oVyTOsKR9AFYt245)PUfRPe5m5lOq1oEAuvOIfRXi0EHQD80OQqflwlg40fQ2XtJQc1BsN3l1oVyTOsKR9EPwS2l6zO1KySZRXKAVq1oEAuvOIfRHeTlqQfQ2XtJQcvSynKODbwOAhpnQkuXI1cYkajAxGfQ2XtJQcvSyXAkAPOZRPgQHewUJlywTNazQ8CNvOAXtziCkQfpLHWP4BNmmP2tOWAiHL7yXAONgtMMulzfQ3KEt6LAVj9oR3KEPS3KI1ipu251clfOPgH3BcLf7D0cvBcNHdhDSxky24Fut(qTs41UsHxJwQLSc1BsVW7LAVW7DwVW7LYEHddSuchoC4WPMqjSCpo3fRfwkWA8q7lG)h(yQ4rnLaDMGOdDolQKIENvJiuheujffQ2brjkunAPwY4P3KAP7fETx0ZGmIiQjO3u1M0l8A0sTKbnjWRr)IO8O2l6zi6GtstvJwQLmkS3KA0sTK9DVWHzuUhNsUHd7hFqDgSuhTgTulzZ7fomJoJBQWs5OWtgDC4C)rTinr7P7nP2WJrqLuuRwKMO9j9MuJwQLm(Fc6AHFcAujf8gWXcyjCSG8eowqQeowajHJfWOYXcYPYXcsrLJfqOY3(BblyblqlPj6fe4mAxGKCFbzFb8oDHcdfNOXtEhjKWYDCK47pMUqHHIt04jxjP5DKqcl3XrIp(OycC47VfSGfSaTKMOxaZh4yb5m3fCSGu6NVGSVa4CaNd47VfSGfSav4fe4mAxGKCFbCHf8b8fGNUy)TGfSGfSGfSGfW8bowqoZDbhliL(5li7liHd4CaF)TGfSGf46ORcVGaNr7cKK7lGlSGzWUa80f7VfSGfSGfSGfSaMpWXcYzUl4ybP0pFbzFbjCahgy5aomjWU)wWcwWcCD0vHxqGZODbsY9fe6Z(cGVa80f7VfSGfSGfSGfSaMpWXcYzUl4ybP0pFbzFbjCKWrY(BblyblW1rFblG5dCSGCM7cowqk9Zxq2xaCos4a((BblyblWfd7VfSGfSaMJpMybmFGJfKZCxWXcsPFohliz)5IHA4KaVg9lIYJAVONHwQLSMQgrhCs6fEnMejO3l8IfRrOrvwoetLN7mUkh8EHxtjuygA5rG2rFO3KAHQxevHNu77POWqbQM4DaXu55ol2BsTbvmqtMa5PXACLNfWL0CzT0CgoC0XEHL7pQr)IO8aYtJ1c)e0Osk4LV93cwWcwGwst0liWz0Uaj5(cY(c4D6cfYvIGW7iHewUJJeF)X0fkKRebHRK08osiHL74iXhFumbo893cwWcwaZXhtSaEhjUuns8XffwYoiiVboJ2fij35B)5IHAHOgWZENLaZ4W5(dy)yCy5(JzCxtjuyMisyOp0BsnTKmuOAdQWHv0pnoPq1oEAuvOIfRfMqJkPOq1oEAuvOIfRrRjXyHQD80OQq1(KNSXZ)tD78I1IkrU2R9jpzJN)N6wSgs0UaluTJNgvfQyXAmcTxOAhpnQkuXI1ysTxOAhpnQkuXI1qI2fi1cv74PrvHkwSMsKZKVGcv74PrvHkwSwqwbir7cSq1oEAuvOIflwdzQ8CNvOApHcRHewUJ1ErptGZODbE6enE2u1ErptGmeNHtc8oV2t4z5cSg5HYAbYqCgojW7fETaNr7cmqgIZYidCgbLSACHAVON5juyNxZZYfyTpLH4SA4KaVwej4lw7f9mboJ2fyGmeN151cCgTlWazioRwsTx0ZqsfLSuCvo4DEXAmpxjfqtc8AONgR9eitLN7Scv7juynKWYDSyn1qnicl3XfWLlywTtxLFI9MqjmuPsLAc3Wc7OFKqzTWsbAQr49MqzXEtGxOAt4mC4OJ9sbZ4gEn5d1kHx7kfEnAPwYkuVj9chg4jjCpoLCdh2p(G6myN1l1EHddLZsMXnvyPCu4jJoEsVZ6fomJY94uYnCy)4dQZGL6OfRfwkWA8q7lG)h(yQ4rnLaDMGOdDolQKIENvJiuheujffQ2brjkunAPwY4P3KAP7fETx0ZGmIiQjO3u1M0l8A0sTKbnjWRr)IO8O2l6zi6GtstvJwQLmkS3KA0sTK9DVWHzuUhNsUHd7hFqDgSuhTgTulzZ7fomJoJBQWs5OWtgDC4C)rTinr7P7nP2WJrqLuuRwKMO9j9MuJwQLm(Fc6AHFcAujf8gWXcyjCSG8eowqQeowajHJfWOYXcYPYXcsrLJfqOY3(BblyblqlPj6fe4mAxGKCFbzFb8oDHcdfNOXtEhjKWYDCK47pMUqHHIt04jxjP5DKqcl3XrIp(OycC47VfSGfSaTKMOxaZh4yb5m3fCSGu6NVGSVa4CaNd47VfSGfSav4fe4mAxGKCFbCHf8b8fGNUy)TGfSGfSGfSGfW8bowqoZDbhliL(5li7liHd4CaF)TGfSGf46ORcVGaNr7cKK7lGlSGzWUa80f7VfSGfSGfSGfSaMpWXcYzUl4ybP0pFbzFbjCahgy5aomjWU)wWcwWcCD0vHxqGZODbsY9fe6Z(cGVa80f7VfSGfSGfSGfSaMpWXcYzUl4ybP0pFbzFbjCKWrY(BblyblW1rFblG5dCSGCM7cowqk9Zxq2xaCos4a((BblyblWfd7VfSGfSaMJpMybmFGJfKZCxWXcsPFohliz)5IHA4KaVg9lIYJAVONHwQLSMQgrhCs6fEnMejO3l8IfRrOrvwoetLN7mUkh8EHxtjuygA5rG2rFO3KAHQxevHNu77POWqbQM4DaXu55ol2BsTbvmqtMa5PXACLNfWL0CzT0CgoC0XEHLByRr)IO8aYtJ1c)e0Osk4LV93cwWcwGwst0liWz0Uaj5(cY(c4D6cfYvIGW7iHewUJJeF)X0fkKRebHRK08osiHL74iXhFumbo893cwWcwaZXhtSaEhjUuns8XffwYoiiVboJ2fij35B)5IHAHOgWZENLaZ4W5(dy)yCy5(JzCxtjuyMisyOp0BsnTKmuOAdQWHv0pnoPq1oEAuvOIfRfMqJkPOq1oEAuvOIfRrRjXyHQD80OQq1(KNSXZ)tD78I1IkrU2R9jpzJN)N6wSgs0UaluTJNgvfQyXAmcTxOAhpnQkuXI1ysTxOAhpnQkuXI1qI2fi1cv74PrvHkwSMsKZKVGcv74PrvHkwSwqwbir7cSq1oEAuvOIflwdzQ8CNvOApHcRHewUJ1ErptGZODbE6enE2u1ErptGmeNHtc8oV2t4z5cSg5HYAbYqCgojW7fETaNr7cmqgIZYidCgbLSACHAVON5juyNxZZYfyTpLH4SA4KaVwej4lw7f9mboJ2fyGmeN151cCgTlWazioRwsTx0ZqsfLSuCvo4DEXAmpxjfqtc8AONgR9eitLN7Scv7juynKWYDSyn1qnicl3XfWLlGATtxLFI9MqjmuPsLAc3Wc7OFKqzTWsbAQr49MqzXEtskuTjCgoC0XEPGzJ)rn5d1kHx7kfEnAPwYkuVj9cVxQ9cV3z9cVxk7fomJdlC4WHdhoSJooCk5UyTWsbwJhAFb8)WhtfpQPeOZeeDOZzrLu07SAeH6GGkPOq1oikrHQrl1sgp9MulDVWR9IEgKrernb9MQ2KEHxJwQLmOjbEn6xeLh1ErpdrhCsAQA0sTKrH9MuJwQLSV7fomJY94uYnCy)4dQZGL6O1OLAjBEVWHz0zCtfwkhfEYOJdN7pQfPjApDVj1gEmcQKIA1I0eTpP3KA0sTKX)tqxl8tqJkPG3aowalHJfKNWXcsLWXcijCSagvowqovowqkQCSacv(2FlyblybAjnrVGaNr7cKK7li7lG3PluyO4enEY7iHewUJJeF)X0fkmuCIgp5kjnVJesy5oos8XhftGdF)TGfSGfOL0e9cy(ahliN5UGJfKs)8fK9faNd4CaF)TGfSGfOcVGaNr7cKK7lGlSGpGVa80f7VfSGfSGfSGfSaMpWXcYzUl4ybP0pFbzFbjCaNd47VfSGfSaxhDv4fe4mAxGKCFbCHfmd2fGNUy)TGfSGfSGfSGfW8bowqoZDbhliL(5li7liHd4WalhWHjb293cwWcwGRJUk8ccCgTlqsUVGqF2xa8fGNUy)TGfSGfSGfSGfW8bowqoZDbhliL(5li7liHJeos2FlyblybUo6lybmFGJfKZCxWXcsPF(cY(cGZrchW3FlyblybUyy)TGfSGfWC8XelG5dCSGCM7cowqk9Z5ybj7pxmudNe41OFruEu7f9m0sTK1u1i6GtsVWRXKib9EHxSyncnQYYHyQ8CNXv5G3l8AkHcZqlpc0o6d9Mulu9IOk8KAFpffgkq1eVdiMkp3zXEtQfMroCdzeK0l1AdQyGMmbYtJ1cLpxaxsZL1sZz4Wrh7fw4FuJ(fr5bKNgRf(jOrLuWlF7VfSGfSaTKMOxqGZODbsY9fK9fW70fkmuCIgp5DKqcl3XrIV)y6cfgkorJNCLKM3rcjSChhj(4JIjWHV)wWcwWcyo(yIfW7iXLQrIpUOWs2bb5nWz0Uaj5oF7pxmule1aE27Seygho3Fa7hJdl3FmJ7AkHcZercd9HEtQPLKHcvBqfoSI(PXjfQ2XtJQcvSyTWeAujffQ2XtJQcvSynAnjgluTJNgvfQ2N8KnE(FQBNxSwujY1ETp5jB88)u3I1qI2fyHQD80OQqflwJrO9cv74PrvHkwSgtQ9cv74PrvHkwSgs0UaPwOAhpnQkuXI1uICM8fuOAhpnQkuXI1cYkajAxGfQ2XtJQcvSyXAitLN7Scv7f9mKurjlfxLdENx7f9mboJ2f4Pt04ztvdNe41IibFXAVON5juyNx7juynKWYDS2t4z5cSg5HYI1yEUskGMe41qpnw7jqMkp3zfQ2tOWAiHL7yXAQHAqewUJlGlxqQANUk)e7nHsyOsLk1eUHf2r)iHYAHLc0uJW7nHYI9MqTq1MWz4Wrh7LcMXn8AYhQvcV2vk8A0sTKvOEP2lCygfwQJszsc3Jtj3WHD0EN1lCyGdN7pOCwYmUPclLJcNAVu2lCyGLs4WHdho1ekHL7X5UyTWsbwJhAFb8)WhtfpQPeOZeeDOZzrLu07SAeH6GGkPOq1oikrHQrl1sgp9MulDVWR9IEgKrernb9MQ2KEHxJwQLmOjbEn6xeLh1ErpdrhCsAQA0sTKrH9MuJwQLSV7fomJY94uYnCy)4dQZGL6O1OLAjBEVWHz0zCtfwkhfEYOJdN7pQfPjApDVj1gEmcQKIA1I0eTpP3KA0sTKX)tqxl8tqJkPG3aowalHJfKNWXcsLWXcijCSagvowqovowqkQCSacv(2FlyblybAjnrVGaNr7cKK7li7lG3PluyO4enEY7iHewUJJeF)X0fkmuCIgp5kjnVJesy5oos8XhftGdF)TGfSGfOL0e9cy(ahliN5UGJfKs)8fK9faNd4CaF)TGfSGfOcVGaNr7cKK7lGlSGpGVa80f7VfSGfSGfSGfSaMpWXcYzUl4ybP0pFbzFbjCaNd47VfSGfSaxhDv4fe4mAxGKCFbCHfmd2fGNUy)TGfSGfSGfSGfW8bowqoZDbhliL(5li7liHd4WalhWHjb293cwWcwGRJUk8ccCgTlqsUVGqF2xa8fGNUy)TGfSGfSGfSGfW8bowqoZDbhliL(5li7liHJeos2FlyblybUo6lybmFGJfKZCxWXcsPF(cY(cGZrchW3FlyblybUyy)TGfSGfWC8XelG5dCSGCM7cowqk9Z5ybj7pxmudNe41OFruEu7f9m0sTK1u1i6GtsVWRXKib9EHxSyncnQYYHyQ8CNXv5G3l8AkHcZqlpc0o6d9Mulu9IOk8KAFpffgkq1eVdiMkp3zXEtQnOIbAYeipnwlu(CbCjnxwlnNHdhDSxytGxJ(fr5bKNgRf(jOrLuWlF7VfSGfSaTKMOxqGZODbsY9fK9fW70fkmuCIgp5DKqcl3XrIV)y6cfgkorJNCLKM3rcjSChhj(4JIjWHV)wWcwWcyo(yIfW7iXLQrIpUOWs2bb5nWz0Uaj5oF7pxmule1aE27Seygho3Fa7hJdl3FmJ7AkHcZercd9HEtQPLKHcvBqfoSI(PXjfQ2XtJQcvSyTWeAujffQ2XtJQcvSynAnjgluTJNgvfQ2N8KnE(FQBNxSwujY1ETp5jB88)u3I1qI2fyHQD80OQqflwJrO9cv74PrvHkwSgtQ9cv74PrvHkwSgs0UaPwOAhpnQkuXI1uICM8fuOAhpnQkuXI1cYkajAxGfQ2XtJQcvSyXAitLN7Scv7f9mKurjlfxLdENx7f9mboJ2f4Pt04ztvdNe41IibFXAVON5juyNx7juynKWYDS2t4z5cSg5HYI1yEUskGMe41qpnw7jqMkp3zfQ2tOWAiHL7yXAQHAqewUJlGlRD6Q8tS3ekHHkvQut4gwyh9JekRfwkqtncV3ekl2BYScvBqfPzo6zysKGkPOx41KpuReETRu41g8ibFmc6nvn0tJjFkvcS2CoHG4KRFpffgkq1clfynEO9fW)dFmv8OgZZvsb0KaVg6PXAeH6GGkPOq1oikrHQrl1sgp9MulDVWHz8AVONbzerutqVZRnPx41ErpdrhCs68A0sTKrH9MuJwQLSV7nPgTulzZ7nPgrhCsGMe41i6GtYNpD0RfPjApDVj1gEmcQKIAjW8rTinr7t6nPwaZJowlEs(QxJOdoj8)e01wWcwWcc)e0Osk4nGjZzEmYXcIiHHCSGbxJe(2FlyblyblybAjnrVaIix7li7lG3aMmN5X4cO4cOUakUGdcEctGIVfqblG3dcEctGAb)XcOY3(BblyblyblG54JjwqejmCbH2c4LxEpi4jmrLGxIix78TGqBbj89hu5BbuCbdUgj8T)wWcwWcCXW(BblOgrhCs6fomW5UgojWRr)IO8OgtIe07fEnKrernbD(Fc6AlyblybHFcAujf8gWK5mpg5ybrKWWVWXcIiHH)LJfm4AK8fowWGRrYF5B)TGfSGfSGfOL0e9ccyY893cwWcwWcwGkmVbmzoZJXfe6xaCyOclFlapDX(BblyblyblybliGjZxq2xqatMZ8yCbuCbuU)wWcwWcwWcCD0vH5nGjZzEmUGq)cGHBy5Bb4Pl2Flyblyblyblybbmz(cY(cOUakyb8gWK5mpgxafxaL8T)wWcwWcwWcCD03Flyblyblyblybbmz(cY(c4nGjZzEmUakybj8TakUak3FlyblyblybUyy)TGfSGfSGfWC8XeliIeg(LfeAlG3aMmFbuCbdUgjFHpowqejm8Vli0waVbmz(cO4cgCns(lF7VfSGfSaxmS)wWcQHmIiQjOdnjWRfpjF1lwlIegwOA4KaVwaZJowlG5rhRfMm4fRfwjuXZcvdNe41cyE0XAbmp6yTWKbVyXAeAuLLdXu55oJRYbVxkibETORd)PujWAFpffgkq1OLs9GmebKNghtqsP9HoVwev0FDY)pgbvsrtv7qXyswtvtjuyMisyOp0BsT0CgoC0XEHD0rH5dkNnB0ekt(GYXRLRLH0u1gHuE0l8At4mC4OJ9sbZs4gg4CNa74Z4MkCURfIAap79dkHHYrhN7KeUNbFuy5UMAOgxh7)PMgpzBb8abTaQ1ysKGENxd90i1pLkbwBAJDHg77ANUk)e7nHsyOsLk1eUHf2r)iHYAONgtgtqsP9HMQgYu55oRq1ErpdjvuYsXv5G351cCgTlWtNOXZmYaNrqjRwOV2Pt04zgzGZiOKvJlu7f9mpHc78AVONjg4A9LC4DETNWZYfynYdL1INYq4uulEkdHtX3ozysTx0Ze4mAxGNorJNDEnMt0wGR1xYH3l8AVON50jA8SPQHtc8ArKGVyTaNr7c80jA8Sgv41Erpt8ugcNIoVwmW16l5W7fEXAmjsqLu0l8AONgPYVuG14NPgXc(tpYaJGKfabvJwQLSc1BsVWHjHsyHp6hWNnk1eyhF0EN1l8EPSx4WW9OFmJAcSjWoJAc3Zkwd904J51G804J5XqTf4Anp0OklcQKcoZYzAYKyOEmATki6zSNOg6PrQttkqIsC4cS2uxBQ)hR2GkgQEcAuLLxJiMutjqNji6qNZIkPO3z1qpnsLFPa5xtYJ14C6qzBQ7y1qpnsDmbjL2hAQAONgPYVuGMAeEVuPSwyvAFyKvd4zVCNud90i1Pj1swH6nP3KEP2BsVZ6nPxk7nPyn0tJuRXLb1sPDXaxLdET5zBS7)1ipu251qpnMWVuG8Rj5XACoDOSn1DSAHzKd3qgbj9oRMIwk68AdQyGMmzkAPO3XP8dQW5Ug6PXe(Lc0uJW7nHAn0tJj8lfyn(zQrSG)0JmWiizbqq1qpnMmnPajkXHlWAtDTP(FSAONgtQXLXAkrwol6nvnTKmuOAdQWHv0pnoPq1oEAuvOIfR9IEMS8tfT2NUQPQfMqJkPOq1oEAuvOIfRrRjXyHQD80OQq1(KNSXZ)tD78I1IkrU2R9jpzJN)N6wSMsKZKVGcv74PrvHkwSgJq7fQ2XtJQcvSyTyGtxOAhpnQkuVjDEVu78I1IkrU27LAXAVONr4z5SoVgtQ9cv74PrvHkwS2l6zOLhPiyNxdjAxGuluTJNgvfQyXAir7cSq1oEAuvOIfRfKvas0UaluTJNgvfQyXI1(Q7b8edCA8BcQKnvTbvmqtMa5PXA2yJ9NFbCDS)xapqq1EcKPYZDwHQfpLHWPOw8ugcNIVDYWKI1qpnMmnPwYkuVj9M0l1Et6DwVj9szVjfRjEhqmvEUZI9MulSuGMAeEVjuwS3ekluTbvKM5ONHjrcQKIEHxt(qTs41UsHxBWJe8XiO3u1qpnM8PujWAZ5ecItU(9uuyOavlSuG14H2xa)p8XuXJAmpxjfqtc8AONgRreQdcQKIcv7GOefQgTulz80BsT09chMXR9IEgKrernb9oV2KEHx7f9meDWjPPQrl1sgf2BsnAPwY(U3KA0sTKnV3KAeDWjbAsGxJOdojF(0rVwKMO909MuB4XiOskQrfgURfPjAFsVj1cyE0XAXtYx9AeDWjH)NGU2cwWcwq4NGgvsbVbmzoZJrowqejmKJfm4AKW3(BblyblyblqlPj6fqe5AFbzFb8gWK5mpgxafxa1fqXfCqWtycu8Takyb8EqWtycul4pwav(2FlyblyblybmhFmXcIiHHli0waV8Y7bbpHjQe8se5ANVfeAliHV)GkFlGIlyW1iHV93cwWcwGlg2Flyb1i6GtsVWHbwURHtc8A0VikpQXKib9EHxdzerutqN)NGU2cwWcwq4NGgvsbVbmzoZJrowqejm8lCSGisy4F5ybdUgjFHJfm4AK8x(2FlyblyblybAjnrVGaMmF)TGfSGfSGfOcZBatMZ8yCbH(fahgQWY3cWtxS)wWcwWcwWcwWccyY8fK9feWK5mpgxafxaL7VfSGfSGfSaxhDvyEdyYCMhJli0Vay4gw(waE6I93cwWcwWcwWcwqatMVGSVaQlGcwaVbmzoZJXfqXfqjF7VfSGfSGfSaxh993cwWcwWcwWcwqatMVGSVaEdyYCMhJlGcwqcFlGIlGY93cwWcwWcwGlg2FlyblyblybmhFmXcIiHHFzbH2c4nGjZxafxWGRrYx4JJfercd)7ccTfWBatMVakUGbxJK)Y3(BblyblWfd7VfSGAiJiIAc6qtc8AXtYx9I1IiHHfQgojWRfW8OJ1cyE0XAHjdEXAHvcv8Sq1WjbETaMhDSwaZJowlmzWlwSgHgvz5qmvEUZ4QCW7LcsGxl66WFkvcSgeNF(9uuyOavJwk1dYqeqEACmbjL2h68Arur)1j))yeujfnvTdfJjznvnLqHzIiHH(qVj1sZz4Wrh7D8zZGbwyNrj1e4uHdBsTCTmKMQ2iKYJEHxBcNHdhDSxky2mUHz0XtGNmJ7rNnkS1crnGN9Ma7my4g2ey5ozCyHLk31ipuEqqf9iRgWZA8Rs7d1qMkp3zfQ2l6ziPIswkUkh8oVwGZODbE6enEMrg4mckz1c91oDIgpZidCgbLSACHAVON5juyNx7f9mXaxRVKdVZR9eEwUaRrEOSw8ugcNIAXtziCk(2jdtQ9IEMaNr7c80jA8SZRXCI2cCT(so8EHx7f9mNorJNnvnCsGxlIe8fRf4mAxGNorJN1OcV2l6zINYq4u051IbUwFjhEVWlwd904J51G804J5XqTf4Anp0OklcQKcoZYzAYKyOEmATki6zSNOgtIe078AONgP(PujWAtBSl0yFx70v5NyVZGfMr5Eg3Jo(husjLFqTg6PXKXeKuAFOPQHEAKAnUmOgtIeujf9cVg6PrQ8lfyn(zQrSG)0JmWiizbqq1OLAjRq9M0lCysgLAcSJ)X4u5Msyt6DwVWHj5d4ZgLAcSJ)X4u5g2EPSx4WaF8X)Gs4WsDukPm5JzZkwd90iv(LcKFnjpwJZPdLTPUJvd90i1Pj1swH6nP3KEP2BsVZ6nPxk7nPyTbvmu9e0OklVgrmPMsGotq0HoNfvsrVZQHEAK60KcKOehUaRn11M6)XQHEAK6ycskTp0u1qpnsLFPan1i8EPszTWQ0(WiRgWZEPYnL1cvViQcpP23trHHcun0tJj8lfOPgH3Bc1AP0UyGRYbV28Sn29)AKhk78AONgt4xkq(1K8ynoNou2M6owTWmYHBiJGKENvtrlfDETbvmqtMmfTu074u(bv4Cxd90yc)sbwJFMAel4p9idmcswaeun0tJjttkqIsC4cS2uxBQ)hR2xDpGNyGtJFtqLSPQHEAmPgxgRPez5SO3u10sYqHQnOchwr)04Kcv74PrvHkwS2l6zYYpv0AF6QMQwycnQKIcv74PrvHkwSgTMeJfQ2XtJQcv7tEYgp)p1TZlwlQe5AV2N8KnE(FQBXAkrot(ckuTJNgvfQyXAmcTxOAhpnQkuXI1IboDHQD80OQq9M059sTZlwlQe5AVxQfR9IEgHNLZ68AmP2luTJNgvfQyXAVONHwEKIGDEnKODbsTq1oEAuvOIfRHeTlWcv74PrvHkwSwqwbir7cSq1oEAuvOIflwt8oGyQ8CNf7nPMAOgxh7)PMgpzBb8abTakR9eitLN7ScvlEkdHtrT4PmeofF7KHjfRHEAmzAsTKvOEt6nPxQ9M07SEt6LYEtkwBqfd0KjqEAS2F(fW1X(Fb8abvlSuGMAeEVZgVyVjWwOAdQinZrpdtIeujf9cVM8HALWRDLcV2Ghj4JrqVPQHEAm5tPsG1MZjeeNC97POWqbQwyPaRXdTVa(F4JPIh1yEUskGMe41qpnwJiuheujffQ2brjkunAPwY4P3KAP7fomJx7f9miJiIAc6DETj9cV2l6zi6GtstvJwQLmkS3KA0sTK9DVj1OLAjBEVj1i6Gtc0KaVgrhCs(8PJETinr7P7nP2WJrqLuuJkmCxlst0(KEtQfW8OJ1INKV61i6Gtc)pbDTfSGfSGWpbnQKcEdyYCMhJCSGisyihlyW1iHV93cwWcwWcwGwst0lGiY1(cY(c4nGjZzEmUakUaQlGIl4GGNWeO4BbuWc49GGNWeOwWFSaQ8T)wWcwWcwWcyo(yIfercdxqOTaE5L3dcEctuj4LiY1oFli0wqcF)bv(wafxWGRrcF7VfSGfSaxmS)wWcQr0bNKEHddSCxdNe41OFruEuJjrc69cVgYiIOMGo)pbDTfSGfSGWpbnQKcEdyYCMhJCSGisy4x4ybrKWW)YXcgCns(chlyW1i5V8T)wWcwWcwWc0sAIEbbmz((BblyblyblqfM3aMmN5X4cc9laomuHLVfGNUy)TGfSGfSGfSGfeWK5li7liGjZzEmUakUak3FlyblyblybUo6QW8gWK5mpgxqOFbWWnS8Ta80f7VfSGfSGfSGfSGaMmFbzFbuxafSaEdyYCMhJlGIlGs(2FlyblyblybUo67VfSGfSGfSGfSGaMmFbzFb8gWK5mpgxafSGe(wafxaL7VfSGfSGfSaxmS)wWcwWcwWcyo(yIfercd)YccTfWBatMVakUGbxJKVWhhliIeg(3feAlG3aMmFbuCbdUgj)LV93cwWcwGlg2Flyb1qgre1e0HMe41INKV6fRfrcdlunCsGxlG5rhRfW8OJ1ctg8I1cReQ4zHQHtc8Abmp6yTaMhDSwyYGxSyncnQYYHyQ8CNXv5G3lfKaVw01H)uQeynio)87POWqbQgTuQhKHiG804ycskTp051IOI(Rt()XiOskAQAhkgtYAQAkHcZercd9HEtQLMZWHJo274jWctcLCpk8zusj1zFulxldPPQncP8Ox41MWz4Wrh7LcMLahg4C)b1pGLAc3u)OwiQb8S3XhfgQWs5OCt5SXHL6mkRrEO8GGk6rwnGN14xL2hQHmvEUZkuTx0ZqsfLSuCvo4DETaNr7c80jA8mJmWzeuYQf6RD6enEMrg4mckz14c1ErpZtOWoV2l6zIbUwFjhENx7j8SCbwJ8qzT4Pmeof1INYq4u8TtgMu7f9mboJ2f4Pt04zNxJ5eTf4A9LC49cV2l6zoDIgpBQA4KaVwej4lwlWz0UapDIgpRrfETx0ZepLHWPOZRfdCT(so8EHxSg6PXhZRb5PXhZJHAlW1AEOrvweujfCMLZ0KjXq9y0Avq0ZyprnMejO351qpns9tPsG1M2yxOX(U2PRYpXEPKsyMnB0p4goLWs9JpsQHEAmzmbjL2hAQAONgPwJldQXKibvsrVWRHEAKk)sbwJFMAel4p9idmcswaeunAPwYkuVj9chMKrPMa74FmovUPe2KEN1lCys(a(SrPMa74FmovUHTxk7fomZ4M6SrH9dUNbF8r5E8I1qpnsLFPa5xtYJ14C6qzBQ7y1qpnsDAsTKvOEt6nPxQ9M07SEt6LYEtkwBqfdvpbnQYYRretQPeOZeeDOZzrLu07SAONgPonPajkXHlWAtDTP(FSAONgPoMGKs7dnvn0tJu5xkqtncVxQuwlSkTpmYQb8SxQCtzTq1lIQWtQ99uuyOavd90yc)sbAQr49MqTwkTlg4QCWRnpBJD)Vg5HYoVg6PXe(LcKFnjpwJZPdLTPUJvlmJC4gYiiP3z1u0srNxBqfd0Kjtrlf9ooLFqfo31qpnMWVuG14NPgXc(tpYaJGKfabvd90yY0KcKOehUaRn11M6)XQ9v3d4jg4043eujBQAONgtQXLXAkrwol6nvnTKmuOAdQWHv0pnoPq1oEAuvOIfR9IEMS8tfT2NUQPQfMqJkPOq1oEAuvOIfRrRjXyHQD80OQq1(KNSXZ)tD78I1IkrU2R9jpzJN)N6wSMsKZKVGcv74PrvHkwSgJq7fQ2XtJQcvSyTyGtxOAhpnQkuVjDEVu78I1IkrU27LAXAVONr4z5SoVgtQ9cv74PrvHkwS2l6zOLhPiyNxdjAxGuluTJNgvfQyXAir7cSq1oEAuvOIfRfKvas0UaluTJNgvfQyXI1eVdiMkp3zXEtQPgQX1X(FQPXt2wapqqla2ApbYu55oRq1INYq4uulEkdHtX3ozysXAONgtMMulzfQ3KEt6LAVj9oR3KEPS3KI1guXanzcKNgRzJnwTWsbAQr49sjLf7nz8cvBcNHdhDSxkG6OFule1aE2lv41qpnsLFPaRXdTVa(F4JPIh1ud1(C6FtHJTGrEQP9NFb)p28PZp)lywnYWGcvsbrNbzQ8CNfluXAONgt(uQeynio)S2GkgQEcAuLLxJO11yEUskGMe41u0srnIqDqqLuuOArKWWcvlG5rhRfMm4fRfwjuXZcvlG5rhRfpzkXxlwSgHgvz5qmvEUZ4QCW7LcsGxtjuygA5rG2rFO3KAJqkp6fomucBn0tJu5xkqtncV3ekR9eitLN7ScvlEkdHtrT4PmeofF7KHj1IbUwFjhEVuHtzYOCxSgYu55oRq1ErpZtOWoV2l6zOpjSCp2u1OFruEK5un41q1Hpu7f9mXaxRVKdVZRfpLHWPOw8ugcNcEOrvwETx0ZedCAvyfDMNqHnvnb5WJfQ3KAF(y5(cWtFbJSI(R(qXAmNOTaxRVKdV2NpwUVa80xWiRO)Qpu7juynKWYDSg9jHL7XmYaNrqjRgxO2t4z5cSg5HYAEwUaRnnPupidrSGpzYCMhJlGxlW1A(QrFsy5ESg8AXaxRVKdVxQWPmzuUR9IEM4PmeofDETbp1lCyOjbETqHNV5k)tpBfRjEhqmvEUZI9Mud90yc)sbYVMKhRDLcVwyg5WnKrqsVuwd90i1pLkbwBoNqqCY1VNIcdfOAdQyGMmzkAPO3rhNByNLulnNHdhDSxyHdVg6PrQ1Sz1(Q7b8edCA8BcQKDEn0tJj14YGAONgt4xkWA8q7lG)h(yQ4rnTKmuOAdQWHv0pnoPq1oEAuvOIfR9IEMS8tfT2NUQPQfMqJkPOq1oEAuvOIfRrRjXyHQfvICTx7ZVNAmdQynLiNjFbfQ2XtJQcvSyngH2luTJNgvfQyXAVONbjAxGDETyGtxOAhpnQkuVu78I1IkrU27LAXAVONHwtIXoVgtQ9cv74PrvHkwS2l6zOLhPiyNxdjAxGuluTJNgvfQyXAir7cSq1oEAuvOI1IkrU27nz8I1cYkajAxGfQ2XtJQcvSyXAONgtMMuGeL4WfynoNoKn1)JvJwk1dYqenvn0tJj8lfOPgH3Bssn0tJjttQLSc1BsVW7DwVWHH7zZMnB2SzZMnB2SzfRD6Q8tSxQuRPeOZeeDOZzrLu07SI9MWDHQnHZWHJo2lfqD0pQfIAap7Lk8AONgPYVuG14H2xa)p8XuXJAQHAwOSGrMlAbFYZu3f8)yZxWSAKHbfQKcIodYu55olwOI1qpnM8PujWAqC(zTbvmu9e0OklVgrRRX8CLuanjWRPOLIAeH6GGkPOq1IiHHfQwaZJowlmzWlwlSsOINfQwaZJowlEYuIVwSyncnQYYHyQ8CNXv5G3lfKaVMsOWm0YJaTJ(qVj1gHuE0lCyOe2AONgPYVuGMAeEVjj1EcKPYZDwHQfpLHWPOw8ugcNIVDYWKAXaxRVKdVxQWPmzuUlwdzQ8CNvOAdEQx4Wqtc8AHcpFZv(NE2QXCI2cCT(so8AF(y5(cWtFbJSI(R(qnb5WJfQ3KA2jzqgYcgzjBGlAbFsuII1Erpd9jHL7XMQ2l6zIbUwFjhENxlEkdHtrT4Pmeof8qJQS8AVON5juyNxtgIGtHEsNx7j8SCbwJ8qzTx0ZepLHWPOZRrFsy5EmJmWzeuYQXfQfdCT(so8EPcNYKr5UMNLlWAttk1dYqel4tMmN5X4c41cCTMVA0NewUhRbV2tOWAiHL7yTx0ZedCAvyfDMNqHnvn6xeLhzovdEnuD4dfRjEhqmvEUZI9Mud90yc)sbYVMKhRDLcVwyg5WnKrqsVZQHEAK6NsLaRnNtiio5A2gJFOAdQyGMmzkAPO3rhNByNLulnNHdhDSxyHdVg6PrQ1cD1(Q7b8edCA8BcQKDEn0tJj14YGAONgt4xkWA8q7lG)h(yQ4rnTKmuOAdQWHv0pnoPq1oEAuvOIfR9IEMS8tfT2NUQPQfMqJkPOq1oEAuvOIfRrRjXyHQfvICTx7ZVNAmdQynLiNjFbfQ2XtJQcvSyngH2luTJNgvfQyXAVONbjAxGnvTyGtxOAhpnQkuVu78I1IkrU27LAXAVONHwtIXoVgtQ9cv74PrvHkwS2l6zOLhPiyNxdjAxGuluTJNgvfQyXAir7cSq1oEAuvOEt4UZ7n5JoVyTOsKR9Et4UyTGScqI2fyHQD80OQqflwSg6PXKPjfirjoCbwJZPdzt9)y1OLs9Gmertvd90yc)sbAQr49MKud90yY0KAjRq9M0l8EN1lCy4E2SzZMnB2SzZMnBwXANUk)e7Lk1Akb6mbrh6Cwujf9oRyVjFuOAt4mC4OJ9sbuh9JAHOgWZEPcVg6PrQ8lfynEO9fW)dFmv8OMAOMnTqzkJRl4)XMVGz1iddkujfeDgKPYZDwSqfRHEAm5tPsG1G48ZAdQyO6jOrvwEnIwxJ55kPaAsGxtrlf1ic1bbvsrHQfrcdluTaMhDSwyYGxSwyLqfpluTaMhDSw8KPeFTyXAeAuLLdXu55oJRYbVxkibEnLqHzOLhbAh9HEtQncP8Ox4WqjS1qpnsLFPan1i8EtsQ9eitLN7ScvlEkdHtrT4PmeofF7KHj1IbUwFjhEVuHtzYOCxSgYu55oRq1ErpZtOWoV2l6zOpjSCp2u1OFruEK5un41q1Hpu7f9mXaxRVKdVZRfpLHWPOw8ugcNcEOrvwETx0ZedCAvyfDMNqHnvnb5WJfQ3KAg9PkEuSgZjAlW16l5WR95JL7lap9fmYk6V6d1EcfwdjSChRrFsy5EmJmWzeuYQXfQ9eEwUaRrEOSMNLlWAttk1dYqel4tMmN5X4c41cCTMVA0NewUhRbVwmW16l5W7LkCktgL7AVONjEkdHtrNxBWt9chgAsGxlu45BUY)0ZwXAI3betLN7SyVj1qpnMWVuG8Rj5XAxPWRfMroCdzeK07SAONgP(PujWAZ5ecItUMTX4hQ2GkgOjtMIwk6D0X5g2zj1sZz4Wrh7fwQWRHEAKATPv7RUhWtmWPXVjOs251qpnMuJldQHEAmHFPaRXdTVa(F4JPIh10sYqHQnOchwr)04Kcv74PrvHkwS2l6zYYpv0AF6QMQwycnQKIcv74PrvHkwSgTMeJfQwujY1ETp)EQXmOI1uICM8fuOAhpnQkuXI1yeAVq1oEAuvOIfRfdC6cv74PrvH6LANxSwujY1EVulw7f9m0Asm251ysTxOAhpnQkuXI1ErpdT8ifb78Air7cKAHQD80OQqflwdjAxGfQ2XtJQcvSyTGScqI2fyHQD80OQqflwSg6PXKPjfirjoCbwJZPdzt9)y1OLs9Gmertvd90yc)sbAQr49MKud90yY0KAjRq9M0l8EN1lCy4E2SzZMnB2SzZMnBwXANUk)e7Lk1Akb6mbrh6Cwujf9oRyVjJwOAt4mC4OJ9sbuh9JAHOgWZEPcVg6PrQ8lfynEO9fW)dFmv8OMAO2N2FNwOSG)hBEnYWGcvsbrNbzQ8CNfluXAONgt(uQeynio)S2GkgQEcAuLLxJO11yEUskGMe41u0srnIqDqqLuuOArKWWcvlG5rhRfMm4fRfwjuXZcvlG5rhRfpzkXxlwSgHgvz5qmvEUZ4QCW7LcsGxtjuygA5rG2rFO3KAJqkp6fomucBn0tJu5xkqtncV3KKApbYu55oRq1INYq4uulEkdHtX3ozysTyGR1xYH37hjuPwSgYu55oRq1ErpZtOWoV2l6zOpjSCp2u1OFruEK5un41q1Hpu7f9mXaxRVKdVZRfpLHWPOw8ugcNcEOrvwETx0ZedCAvyfDMNqHnvnb5WJfQ3KAFgNqFQOxGrZCYrXAmNOTaxRVKdV2NXj0Nk6fy0mNCu7juynKWYDSg9jHL7XmYaNrqjRgxO2t4z5cSg5HYAEwUaRnnPupidrSGpzYCMhJlGxlW1A(QrFsy5ESg8AXaxRVKdV3psOsT2l6zINYq4u051g8uVWHHMe41cfE(MR8p9SvSM4DaXu55ol2Bsn0tJj8lfi)AsES2vk8AHzKd3qgbj9oRg6PrQFkvcS2CoHG4KRzBm(HQnOIbAYKPOLIEhDCUHDwsT0CgoC0XEHLs41qpnsT2xQ9v3d4jg4043euj78AONgtQXLb1qpnMWVuG14H2xa)p8XuXJAAjzOq1guHdROFACsHQD80OQqflw7f9mz5NkATpDvtvlmHgvsrHQD80OQqflwJwtIXcvlQe5AV2NFp1yguXAkrot(ckuTJNgvfQyXAmcTxOAhpnQkuXI1IboDHQD80OQq9sTZlwlQe5AVxQfR9IEgAnjg78AmP2luTJNgvfQyXAVONHwEKIGDEnKODbsTq1oEAuvOIfRHeTlWcv74PrvHkwSwqwbir7cSq1oEAuvOIflwd90yY0KcKOehUaRX50HSP(FSA0sPEqgIOPQHEAmHFPan1i8EtsQHEAmzAsTKvOEt6fEVZ6fomCpB2SzZMnB2SzZMnRyTtxLFI9sLAnLaDMGOdDolQKIENvSxQWluTjCgoC0XEPaQJ(rnYWGcvsbrNbzQ8CNfluXAONgt(uQeynio)SgZZvsb0KaVMIwkQreQdcQKIcvlIegwOAbmp6yTWKbVyTWkHkEwOAbmp6yT4jtj(AXI1i0OklhIPYZDgxLdEVuqc8AkHcZqlpc0o6d9Mud90yc)sbwJhAFb8)WhtfpQLMZWHJo2lSFaVgTuQhKHiAQAONgt4xkqtncV3KKAONgP(PujWAZ5ecItUMTX4hQ2PRYpXEPsTwiQb8SxQWRHEAKk)sbwJhAFb8)WhtfpQPgQX1PU)VGPX5f6BoZ2cOwBqfdvpbnQYYRr06Akb6mbrh6Cwujf9oRg6PrQ8lfOPgH3BssnX7aIPYZDwS3KAONgt4xkq(1K8yTRu41cZihUHmcs6Dwn0tJuNMulzfQxQ9chMrhDC4C)bLZsMXnvyHT3z9chMrh)JXPYnLWcF0pGpB0I1guXanzYu0srVJoo3WolPg6PXKACzqTriLh9chgkHTMwsgkuTbv4Wk6NgNuOAhpnQkuXI1Erptw(PIw7tx1u1ctOrLuuOAhpnQkuXI1O1KySq1IkrU2R953tnMbvSMsKZKVGcv74PrvHkwSgJq7fQ2XtJQcvSyTyGtxOAhpnQkuVu78I1IkrU27LAXAVONHwtIXoVgtQ9cv74PrvHkwS2l6zOLhPiyNxdjAxGuluTJNgvfQyXAir7cSq1oEAuvOIfRfKvas0UaluTJNgvfQyXI1(Q7b8edCA8BcQKDEn0tJjttkqIsC4cSgNthYM6)XQ9eitLN7ScvlEkdHtrT4PmeE0HqMeRfdCT(so8EhhoSfRHEAmzAsTKvOEt6fEVZ6fomCpB2SzZMnB2SzZMnRyn0tJuRzZHTgYu55oRq1g8uVWHHMe41cfE(MR8p9SvJ5eTf4A9LC414QsmSGPjfitQRjihESq9MuJRkXWcMMuGmPUyTx0ZqFsy5ESPQ9IEMyGR1xYH351INYq4uulEkdHtbp0OklV2l6zEcf251KHi4uON051EcplxG1ipuw7f9mXtziCk68A0NewUhZidCgbLSACHAXaxRVKdV3XHdBnplxG1MMuQhKHiwWNmzoZJXfWRf4AnF1OpjSCpwdETNqH1qcl3XAVONjg40QWk6mpHcBQA0VikpYCQg8AO6WhkwSxQjfQ2eodho6yVua1r)OwiQb8SxQWRHEAKk)sbwJhAFb8)WhtfpQPgQXZ3tBbqC(93JDHwW)JnVgzyqHkPGOZGmvEUZIfQyn0tJjFkvcSgeNFwBqfdvpbnQYYRr06Ampxjfqtc8AkAPOgrOoiOskkuTisyyHQfW8OJ1ctg8I1cReQ4zHQfW8OJ1INmL4RflwJqJQSCiMkp3zCvo49sbjWRPekmdT8iq7Op0BsTriLh9chgkHTg6PrQ8lfOPgH3BssTNazQ8CNvOAXtziCkQfpLHWP4BNmmPwmW16l5W7L6mQJpBwXAitLN7ScvBWt9chgAsGxlu45BUY)0ZwnMt0wGR1xYHxJhgnr4lasYyUaRjihESq9MuJhgnr4lasYyUalw7f9m0NewUhBQAVONjg4A9LC4DET4Pmeof1INYq4uWdnQYYR9IEMNqHDEnzicof6jDETNWZYfynYdL1Erpt8ugcNIoVg9jHL7XmYaNrqjRgxOwmW16l5W7L6mQJpBwnplxG1MMuQhKHiwWNmzoZJXfWRf4AnF1OpjSCpwdETNqH1qcl3XAVONjg40QWk6mpHcBQA0VikpYCQg8AO6Whkwt8oGyQ8CNf7nPg6PXe(LcKFnjpw7kfETWmYHBiJGKENvd90i1pLkbwBoNqqCY1Sng)q1guXanzYu0srVJoo3WolPwAodho6yVWoo8AONgPwZ(U2xDpGNyGtJFtqLSZRHEAmPgxgud90yc)sbwJhAFb8)WhtfpQPLKHcvBqfoSI(PXjfQ2XtJQcvSyTx0ZKLFQO1(0vnvTWeAujffQ2XtJQcvSynAnjgluTJNgvfQ2NFp1yguNxSwujY1ETp)EQXmOI1uICM8fuOAhpnQkuXI1yeAVq1oEAuvOI1IkrU2RnxlLdJPdxSwmWPluTJNgvfQxQDEXArLix79sTyTx0ZWi0ENxJj1EHQD80OQqflw7f9m0YJueSZRHeTlqQfQ2XtJQcvSynKODbwOAhpnQkuXI1cYkajAxGfQ2XtJQcvSyXAONgtMMuGeL4WfynoNoKn1)JvJwk1dYqenvn0tJj8lfOPgH3Bssn0tJjttQLSc1BsVW7DwVWHH7zZMnB2SzZMnB2SzfRD6Q8tSxQuRPeOZeeDOZzrLu07SIfl2c
WeakAura Custom Code
c.0.animation.main.alphaFunc
function(progress, start, delta) return start + (progress * delta) end
c.0.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local angle = (progress + 0.25) * 2 * math.pi return startX + (math.cos(angle) * deltaX * math.cos(angle*2)), startY + (math.abs(math.cos(angle)) * deltaY * math.sin(angle*2)) end
c.1.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local angle = (progress + 0.25) * 2 * math.pi return startX + (math.cos(angle) * deltaX * math.cos(angle*2)), startY + (math.abs(math.cos(angle)) * deltaY * math.sin(angle*2)) end
c.2.animation.main.alphaFunc
function(progress, start, delta) local angle = (progress * 2 * math.pi) - (math.pi / 2) return start + (((math.sin(angle) + 1)/2) * delta) end
c.2.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) return startX + (progress * deltaX), startY + (progress * deltaY) end
c.3.animation.main.alphaFunc
function(progress, start, delta) return start + (progress * delta) end
c.3.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.4.animation.main.alphaFunc
function(progress, start, delta) return start + (progress * delta) end
c.4.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.4.animation.start.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.5.animation.main.alphaFunc
function(progress, start, delta) return start + (progress * delta) end
c.5.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.5.animation.start.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.6.animation.main.alphaFunc
function(progress, start, delta) return start + (progress * delta) end
c.6.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.6.animation.start.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.7.animation.main.alphaFunc
function(progress, start, delta) local angle = (progress * 2 * math.pi) - (math.pi / 2) return start + (((math.sin(angle) + 1)/2) * delta) end
c.7.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.7.animation.start.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog = (progress * 3.5) % 1 local bounce = math.ceil(progress * 3.5) local bounceDistance = math.sin(prog * math.pi) * (bounce / 4) return startX + (bounceDistance * deltaX), startY + (bounceDistance * deltaY) end
c.8.animation.main.colorFunc
function(p, r1, g1, b1, a1, r2, g2, b2, a2) local percentage = (UnitHealth("target")/UnitHealthMax("target"))*100 local red, green, blue = 0,0,0 if percentage > 80 then red, green, blue = 1,0,0 elseif percentage > 35 then red, green, blue = 1,0.5,0.15 elseif percentage <= 0 then red, green, blue = 1,1,1 else red, green, blue = 0,1,0 end return red, green, blue, 1 end
c.8.customText
function() local percentage = (UnitMana("target")/UnitManaMax("target"))*100 return ("%i"):format(percentage) end
c.9.animation.main.colorFunc
function(p, r1, g1, b1, a1, r2, g2, b2, a2) local percentage = (UnitHealth("target")/UnitHealthMax("target"))*100 local red, green, blue = 0,0,0 if percentage > 80 then red, green, blue = 1,0,0 elseif percentage > 35 then red, green, blue = 1,0.5,0.15 elseif percentage <= 0 then red, green, blue = 1,1,1 else red, green, blue = 0,1,0 end return red, green, blue, 1 end
c.9.customText
function() local percentage = (UnitMana("target")/UnitManaMax("target"))*100 return ("%i"):format(percentage) end
c.10.animation.main.colorFunc
function(p, r1, g1, b1, a1, r2, g2, b2, a2) local percentage = (UnitHealth("target")/UnitHealthMax("target"))*100 local red, green, blue = 0,0,0 if percentage > 80 then red, green, blue = 1,0,0 elseif percentage > 35 then red, green, blue = 1,0.5,0.15 elseif percentage <= 0 then red, green, blue = 1,1,1 else red, green, blue = 0,1,0 end return red, green, blue, 1 end
c.10.customText
function() local percentage = (UnitHealth("target")/UnitHealthMax("target"))*100 return ("%i"):format(percentage) end
c.11.animation.main.colorFunc
function(p, r1, g1, b1, a1, r2, g2, b2, a2) local percentage = (UnitHealth("target")/UnitHealthMax("target"))*100 local red, green, blue = 0,0,0 if percentage > 80 then red, green, blue = 1,0,0 elseif percentage > 35 then red, green, blue = 1,0.5,0.15 elseif percentage <= 0 then red, green, blue = 1,1,1 else red, green, blue = 0,1,0 end return red, green, blue, 1 end
c.11.customText
function() local percentage = (UnitHealth("target")/UnitHealthMax("target"))*100 return ("%i"):format(percentage) end
c.12.animation.main.alphaFunc
function(progress, start, delta) local angle = (progress * 2 * math.pi) - (math.pi / 2) return start + (((math.sin(angle) + 1)/2) * delta) end
c.12.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog if(progress < 0.25) then prog = progress * 4 elseif(progress < .75) then prog = 2 - (progress * 4) else prog = (progress - 1) * 4 end return startX + (prog * deltaX), startY + (prog * deltaY) end
c.13.animation.main.alphaFunc
function(progress, start, delta) local angle = (progress * 2 * math.pi) - (math.pi / 2) return start + (((math.sin(angle) + 1)/2) * delta) end
c.13.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog if(progress < 0.25) then prog = progress * 4 elseif(progress < .75) then prog = 2 - (progress * 4) else prog = (progress - 1) * 4 end return startX + (prog * deltaX), startY + (prog * deltaY) end
c.14.animation.main.alphaFunc
function(progress, start, delta) local angle = (progress * 2 * math.pi) - (math.pi / 2) return start + (((math.sin(angle) + 1)/2) * delta) end
c.14.animation.main.translateFunc
function(progress, startX, startY, deltaX, deltaY) local prog if(progress < 0.25) then prog = progress * 4 elseif(progress < .75) then prog = 2 - (progress * 4) else prog = (progress - 1) * 4 end return startX + (prog * deltaX), startY + (prog * deltaY) end
Current version: 1.0.0
Version | WoW Addon | Updated |
---|